Matter & Energy 

Understanding light-induced electrical current in atomically thin nanomaterials

Scientists at the Center for Functional Nanomaterials (CFN) — a U.S. Department of Energy (DOE) Office of Science User Facility at Brookhaven National Laboratory — have used an optoelectronic imaging technique to study the electronic behavior of atomically thin nanomaterials exposed to light. Combined with nanoscale optical imaging, this scanning photocurrent microscopy technique provides a powerful tool for understanding the processes affecting the generation of electrical current (photocurrent) in these materials. Such an understanding is key to improving the performance of solar cells, optical sensors, light-emitting diodes (LEDs), and other optoelectronics — electronic devices that rely on light-matter interactions to convert light into electrical signals or vice versa.

Read More

Preserving a painter’s legacy with nanomaterials

Paintings by Vincent van Gogh, Pablo Picasso and Johannes Vermeer have been delighting art lovers for years. But it turns out that these works of art might be their own worst enemy — the canvases they were painted on can deteriorate over time. In an effort to combat this aging process, one group is reporting in ACS Applied Nano Materials that nanomaterials can provide multiple layers of reinforcement.

Read More

Valves for tiny particles

Researchers from ETH Zurich have developed tiny valves that enable individual nanoparticles in liquids to be separated and sorted. The valves can be used for a very broad range of tiny particles, including individual metal and semiconductor nanoparticles, virus particles, liposomes and larger biomolecules such as antibodies.

Read More

Strain directs spin waves

It is becoming harder to respond to the demands of the rapidly-growing information society due to failures caused by increased chip temperatures in the ever-more integrated chips used by the latest electronic devices based on semiconductor materials. Therefore, the development of spin wave integrated circuits (ICs), which can perform information processing with minimal generation of heat by manipulating spin only rather than moving electrons, has been gaining attention. Within this field, spin waves transmitted through a magnetic insulator film have the advantage that energy loss is small and long-distance transmission is possible. On the other hand, in order to transmit spin waves within a magnetic insulator film, it was previously necessary to attach relatively large permanent magnet parts to the magnetic insulator film, which was a problem for realizing spin wave ICs.

Read More

Controlled nano-assembly

DNA, the carrier of genetic information, has become established as a highly useful building material in nanotechnology. One requirement in many applications is the controlled, switchable assembly of nanostructures. In the journal Angewandte Chemie, scientists have now introduced a new strategy for control through altering pH value. It is based on ethylenediamine, which only supports the assembly of DNA components in a neutral to acidic environment — independent of the base sequences and without metal ions.

Read More

Recombinant E. Coli As a biofactory for the biosynthesis of diverse nanomaterials

A metabolic research group at KAIST and Chung-Ang University in Korea has developed a recombinant E. coli strain that biosynthesizes 60 different nanomaterials covering 35 elements on the periodic table. Among the elements, the team could biosynthesize 33 novel nanomaterials for the first time, advancing the forward design of nanomaterials through the biosynthesis of various single and multi-elements.

Read More

Atomic-scale manufacturing now a reality

Scientists at the University of Alberta have applied a machine learning technique using artificial intelligence to perfect and automate atomic-scale manufacturing, something which has never been done before. The vastly greener, faster, smaller technology enabled by this development greatly reduces impact on the climate while still satisfying the insatiable demands of the information age.

Read More