New method for finding disease-susceptibility genes

A new study, affiliated with UNIST has recently presented a novel statistical algorithm, capable of identifying potential disease genes in a more accurate and cost-effective way. This algorithm has also been considered as a new promising approach for the identification of candidate disease genes, as it works effectively with less genomic data and takes only a minute or two to get results.

Read More
Computers & Math 

An elastic fiber filled with electrodes set to revolutionize smart clothes

It’s a whole new way of thinking about sensors. The tiny fibers developed at EPFL are made of elastomer and can incorporate materials like electrodes and nanocomposite polymers. The fibers can detect even the slightest pressure and strain and can withstand deformation of close to 500% before recovering their initial shape. All that makes them perfect for applications in smart clothing and prostheses, and for creating artificial nerves for robots.

Read More

Using the K computer, scientists predict exotic ‘di-Omega’ particle

Based on complex simulations of quantum chromodynamics performed using the K computer, one of the most powerful computers in the world, the HAL QCD Collaboration, made up of scientists from the RIKEN Nishina Center for Accelerator-based Science and the RIKEN Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS) program, together with colleagues from a number of universities, have predicted a new type of “dibaryon” — a particle that contains six quarks instead of the usual three. Studying how these elements form could help scientists understand the interactions among elementary particles in extreme environments such as the interiors of neutron stars or the early universe moments after the Big Bang.

Read More

Wood to supercapacitors

Carbon aerogels are ultralight, conductive materials, which are extensively investigated for applications in supercapacitor electrodes in electrical cars and cell phones. Chinese scientists have now found a way to make these electrodes sustainably. The aerogels can be obtained directly from cellulose nanofibrils, the abundant cell-wall material in wood, finds the study reported in the journal Angewandte Chemie.

Read More

Antiferromagnetic materials allow for processing at terahertz speeds

Data hurtle down fiber-optic cables at frequencies of several terahertz. As soon as the data arrive on a PC or television, this speed must be throttled to match the data processing speed of the device components, which currently is in the range of a few hundred gigahertz only. Researchers at Johannes Gutenberg University Mainz (JGU) have now developed a technology that can process the data up to hundred times faster and thus close the gap between the transport and processing speeds.

Read More
Computers & Math 

First chip-scale broadband optical system that can sense molecules in mid-infrared range

Researchers at Columbia Engineering have demonstrated, for the first time, a chip-based dual-comb spectrometer in the mid-infrared range, that requires no moving parts and can acquire spectra in less than 2 microseconds. The system, which consists of two mutually coherent, low-noise, microresonator-based frequency combs spanning 2600 nm to 4100 nm, could lead to the development of a spectroscopy lab-on-a-chip for real-time sensing on the nanosecond time scale.

Read More

Researchers devise more effective location awareness for the Internet-of-(many)-Things

Anticipating a critical strain on the ability of fifth generation (5G) networks to keep track of a rapidly growing number of mobile devices, engineers at Tufts University have come up with an improved algorithm for localizing and tracking these products that distributes the task among the devices themselves. It is a scalable solution that could meet the demands of a projected 50 billion connected products in the Internet-of-Things by 2020, and would enable a widening range of location-based services. The results of the Tufts study were published today in Proceedings of the IEEE, the leading peer-reviewed scientific journal published by the Institute of Electrical and Electronics Engineers.

Read More